Bijective functions

Definition: A function $f: X \rightarrow Y$ is bijective (or one-to-one correspondence)
if f is both injective and surjective.

Theorem. If A and B are finite sets with $|A|=|B|=n$, then there are n ! bijective functions from A to B.

Theorem. Let A and B be finite nonempty sets with $|A|=|B|$ and let f be a function from A to B. Then f is one-to-one if and only if f is onto.

- Does this hold if A and B are infinite sets?

Examples:

1. Prove that the function $f: \mathbb{R}-\{5\} \rightarrow \mathbb{R}-\{1\}$ defined by $f(x)=\frac{x}{x-5}$ is bijective.
2. Prove that the function $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ defined by $f([x])=[5 x+2]$ is a well defined bijective function.

Composition of Functions

Definition: If $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions, then $g \circ f$ is a function from A to C defined by $(g \circ f)(x)=g(f(x))$. It is called the composition of f and g.

Examples:

1. $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}+2 x+5$ and $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined by $f(x)=\sqrt{x}$. Find the domain and range of f and g, as well as $f \circ g$ and $g \circ f$ (where they are defined).
2. $f=\{(1, m),(2, n),(3, m)\}, g=\{(k, 1),(l, 2),(m, 1),(n, 3)\}$. Find $f \circ g$ and $g \circ f$.

Theorem. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions.
(a) If f and g are injective, then so is $g \circ f$.
(b) If f and g are surjective, then so is $g \circ f$.

Corollary. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijective functions, then so is $g \circ f$ is bijective.

